
SyncFree Technology White Paper

Verifico: CRDT-App Verification Framework for Isabelle

Peter Zeller
U. Kaiserslautern

22 December 2016

The need for verification tools

Programming applications using weak consistency is inher-
ently complex. Most importantly, convergence must be en-
sured, meaning that all replicas represent the same abstract
state when they have observed the same set of operations,
without losing writes. To help programmers handle this
problem, conflict-free replicated data types (CRDTs) have
been developed. A CRDT is a reusable data type, which
embodies a certain strategy to handle concurrent updates.
Examples are counters, sets, and maps. When an appli-
cation is written using CRDTs, the convergence property
comes for free and thus the development effort is reduced.

However, convergence is not the only desirable prop-
erty of an application. It is also important that concurrent
updates are handled in a way that makes sense for the ap-
plication. These correctness properties are often overlooked
by developers. One reason for this is that there is no sys-
tematic method to reason about the correctness of an im-
plementation. While there are multiple program logics for
working with sequential and concurrent programs, there are
no frameworks yet, which support reasoning about eventual
consistency and CRDTs on a higher level. Thus, it is not
feasible to use existing frameworks to reason about non-
trivial correctness properties of these kinds of applications.

Our approach is currently targeted at developers expe-
rienced in formal verification. Our goal is to start with a
general approach, which can be used to verify any func-
tional property for a very wide range of applications. This
distinguishes our framework from automated approaches,
which can be used for a small set of properties (e.g. in-
tegrity constraints on the data) and for a more limited set
of applications (e.g. no loops and exactly one transaction
per operation). Automation can be added via extensions to
the basic framework, which we plan to provide with future
releases.

The framework can also be used to prove general pro-
gramming patterns correct, which then can be used by
other programmers, which do not have a background in
formal verification.

Main contributions:

• A formal semantics of a replicated database.
• Composable CRDT specifications.
• Infrastructure for proving applications correct (proof

rules, useful simplifications, etc.)

Relation to other Syncfree products:

• The framework includes a formal semantics of a repli-
cated database with parallel snapshot transactions,
causal consistency, and CRDTs. These are exactly
the guarantees provided by Antidote, so the frame-
work can be used to reason about the correctness of
an application that uses Antidote.

• CISE is a related tool developed in the SyncFree
project, which provides more automation, but is less
flexible.

Usage

The framework is developed in Isabelle/HOL.1 To verify
an application, it has to be modeled in a simple language,
which is embedded into Isabelle and provided by our frame-
work. Then the desired properties can be specified using
logical formulas.

In general, it is not decidable whether a given applica-
tion satisfies a property, so the verification developer has to
explain why the application satisfies the desired property.
This explanation is done by specifying additional invari-
ants.

The framework then uses this input to derive verifica-
tion conditions. Those can be proven interactively using
the Isabelle proof system. The framework provides simpli-
fication rules to support this task.

More information is available at:
https://softech-git.cs.uni-kl.de/zeller/isabelle_crdt_apps.

We also refer the reader to the companion white paper:
“ Just-Right Consistency, or How to tailor consistency to
application requirements.”

1https://isabelle.in.tum.de

1

https://softech-git.cs.uni-kl.de/zeller/isabelle_crdt_apps
https://isabelle.in.tum.de

	The need for verification tools
	Main contributions:
	Relation to other Syncfree products:
	Usage

