
Applying the VVM Kernel to Flexible Web Caches

Ian Piumarta, Frederic Ogel, Carine Baillarguet, Bertil Folliot

email: fian.piumarta, frederic.ogel, carine.baillarguetg@inria.fr, bertil.folliot@lip6.fr

1 Introduction

The VVM (virtual virtual machine)1 is a systematic approach
to adaptability and reconfigurability for portable, object-oriented
applications based on bytecoded languages such as Java and
Smalltalk [FP+00].

The main objectives of the VVM are (i) to allow adaptation of
language and system according to a particular application domain;
(ii) to provide extensibility by allowing a “live” execution environ-
ment to evolve according to new protocols or language standards;
and (iii) to provide a common substrate on which to achieve true
interoperability between different languages [FPR98,Fol00].

On the way to implement a VVM we already implemented
VVM1 (and it’s application to active networks [KF00]) and VVM2
(and it’s application to flexible web cache and distributed obser-
vation). The VVM2 is a highly-flexible language kernel which
consists of a minimal, complete programming language in which
the most important goal is to maximise the amount of reflective
access and intercession that are possible—at the lowest possible
“software level”.

2 Our architecture

The VVM2 contains a dynamic compiler front-end/back-end,
which converts input into optimized native code and an object-
oriented environment (with automatic, transparent memory man-
agement) used internally by the VVM2 (this work is under consid-
eration for publication).

3 Example application: flexible web caches

Flexibility in web caches come from the ability to configure a
large number of parameters2 that influence the behaviour of the
cache (protocols, cache size, and so on). What’s more, some
of these parameters cannot be determined before deploying the
cache, like: user behaviour, change of protocol or the “hot-spots-
of-the-week” [Sel96]. However, reconfiguring current web caches
involves halting the cache to install the new policy and then restart-
ing it, therefore providing only “cold” flexibility. Our flexible
cache architecture is built directly over the VVM2 and so provides
“warm” replacement of policies, without compromising the ease
of writing new protocols found in existing web caches. Other ad-
vantages include the ability to tune the web cache on-line, to add
arbitrary new functionality (observation protocols, performance
evaluation, protocol tracing, debugging, and so on) at any time,
and to remove them when they are no longer needed.

Our approach supports both initial configuration, based on sim-
ulation, and dynamic adaptation of the configuration in response
to observed changes in real traffic as they happen.

This approach is highly reflexive because the dynamic manage-
ment of the cache is expressed in the same language that is used
to implement the cache. The resulting cache, called C/NN3, can
be modified at any time: new functionality and policies can be in-
troduced and activated during execution. It is therefore possible to

1VVM is both a concept, an implementation and the project’s name.
2See the configuration file for Squid...
3The Cache with No Name.

dynamically define reconfiguration policies to process adaptations,
while preserving the cache contents and delaying request for a few
�s.

In order to evaluate the flexibility of our cache we made both
quantitative and qualitative measurements4. Timing the principal
operations in C/NN was trivial because of the use of the highly-
reflexive VVM2 at the lowest level. We were able to “wrap” timers
around the functions without even stopping the cache. Results
are very promising : handling a hit (the main bottleneck for the
cache itself) takes less than 200�s, switching from one policy to
another takes less than 50�s, at least defining a new policy and re-
evaluating 5,000 documents takes a couple of tens of ms. It seems
clear that dynamic flexibility does not penalise the performance of
the cache. It is also important to consider the ease of use of recon-
figuration in our cache : typical replacement and reconfiguratoin
functions are short and quickly written (a few minutes for a system
administrator).

4 Conclusions

This paper presented and evaluated shortly, due to lack of
space, the benefits of using a highly-flexible language kernel, the
VVM2, to solve a specific computer science problem : flexible
web caching. The resulting web cache, C/NN, demonstrates that
reconfigurability can be simple, dynamic and have good perfor-
mance.

We finished to incorporate Pandora[PM00a] into VVM2. Pan-
dora is a system for dynamic evaluation of the performance of web
cache configurations: this opens the way for “self-adapting” web
caches, were the policies are constantly re-evaluated and modified
as and when needed.

References
[Fol00] B. Folliot, The Virtual Virtual Machine Project, Invited talk at the

SBAC’2000, Brasil, October 2000.

[FPR98] B. Folliot, I. Piumarta and F. Ricardi, A Dynamically Config-
urable, Multi-Language Execution Platform SIGOPS European Work-
shop 1998.

[FP+00] B. Folliot, I. Piumarta, L. Seinturier, C. Baillarguet and C.
Khoury, Highly Configurable Operating Systems: The VVM Approach,
In ECOOP’2000 Workshop on Object Orientation and Operating Sys-
tems, Cannes, France, June 2000.

[KF00] C. Khoury and B. Folliot, Environnement de programmation actif
pour la mobilit, Proceedings of Jeunes Chercheurs en Systemes, GDR
ARP et ASF, Besanon, France, June 2000.

[PM00a] S. Patarin and M. Makpangou, Pandora: a Flexible Network
Monitoring Platform Proceedings of the USENIX 2000 Annual Tech-
nical Conference, San Diego, June 2000.

[Sel96] Margo Seltzer, The World Wide Web: Issues and Challenges ,
Presented at IBM Almaden, July 1996.

[ZMF+98] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd and
V. Jacobson, Adaptive Web Caching: towards a new global caching
architecture, Computer Networks and ISDN Systems, 30(22-23):2169-
2177, November 1998

4On a G3 233MHz, running LinuxPPC 2000


