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ABSTRACT
Smart devices, such as personal assistants, mobile phone or
smart cards, continuously spread and thus challenge every
aspect of our lives. However, such environments exhibit spe-
cific constraints, such as mobility, high-level of dynamism
and most often restricted resources. Traditional middle-
wares were not designed for such constraints and, because
of their monolithic, static and rigid architectures, are not
likely to become a fit.

In response, we propose a flexible micro-ORB, called Flex-
ORB, that supports on demand export of services as well
as their dynamic deployment and reconfiguration. Flex-
ORB supports mobile code through an intermediate code
representation. It is built on top of Nevermind, a flexi-
ble minimal execution environment, which uses a reflexive
dynamic compiler as a central common language substrate
upon which to achieve interoperability.

Preliminary performance measurements show that, while
being relatively small (120 KB) and dynamically adapt-
able, FlexORB outperforms traditional middlewares such as
RPC, CORBA and Java RMI.

1. INTRODUCTION
Recent developments in wireless and embedded technologies
have led to the emergence of pervasive computing: a step to-
wards ubiquitous computing. Active spaces and, more gen-
erally, ubiquitous computing seem to be no longer science
fiction. As envisioned by Weiser in [17], ubiquitous comput-
ing relies on the interactions between evanescent systems
vanishing into active spaces. It thus introduces issues like:
context awareness and sensitivity, user-centrism, dynamic
flexibility, interoperability and mobility [2]. Active spaces
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rely on the interactions of smart devices, such as personal
assistants, and their environment, composed of projectors
and printers for example. Realistic scenarios highlighting
those issues can be found in [2, 7]. With respect to their lim-
ited resources, smart devices can not be provided in advance
with every protocol or service they might need once and for
all. In particular, such high-levels of heterogeneity and dy-
namism challenge traditional middleware architectures and
raise severe interoperability and portability issues [16]. As
previously stated in [7], mobile code is a solution to cope
with such constraints.

Middlewares have emerged to hide issues related to dis-
tributed heterogeneous environments, such as network com-
munications or interoperability. Nonetheless, they are still
designed for server and workstation based environments with
a monolithic architecture. Hence, they are not suitable for
active spaces and smart objects. They lack flexibility, dy-
namism and are still too large to fit in resource-limited
devices. Work around reflexive middlewares, as described
in [4], represents a first step towards a solution to ubiqui-
tous computing.

We propose a flexible micro-ORB based on the Nevermind

dynamically adaptable minimal execution environment. It
relies on reflection and dynamic compilation provided by
Nevermind to support both mobile code, on demand ex-
port and deployment of components, as well as dynamic re-
configuration of inter-components bindings. Hence, it deals
with interoperability and dynamic adaptation issues in such
interaction-based environments as active spaces.

This paper makes the following contributions to the design
of flexible middlewares for ubiquitous computing:

1. it describes the design and implementation of a small
memory footprint flexible micro-ORB;

2. it shows that such a micro-ORB can outperform tradi-
tional middlewares on static remote invocations, while
providing support for code mobility as well as on de-
mand deployment and reconfiguration;

3. it indicates that dynamic flexibility itself can be very
efficient.
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Figure 1: Dynamic construction of FlexORB.

The remainder of this paper starts with a presentation of
the FlexORB flexible micro-ORB in Section 2. Section 3
presents some performance measurements, showing an im-
provement factor for remote invocations ranging from 7.5 to
63.7 compared with various CORBA implementations, fol-
lowed by related work in Section 4. We conclude and give
some perspectives in Section 5.

2. FlexORB: A FLEXIBLE MICRO-ORB
FlexORB is a flexible minimal middleware designed to sup-
port on-demand export of components, dynamic flexibility,
interoperability and mobile computing. It is built on top
of a dynamically adaptable minimal execution environment
called Nevermind.1 This section first introduces the Nev-

ermind execution environment, followed by a presentaiton
of FlexORB itself. With respect to traditional middleware
architectures, we have implemented a naming service and a
component trader, which are not described in this paper for
sake of place.

2.1 Nevermind: a flexible execution environ-
ment

Nevermind offers support for interoperability, dynamic flex-
ibility and mobile code while preserving performance. It is
structured as a set of components and interfaces based on

1French acronym that stands for Nevermind is an Exten-
sible, Reflexive, Minimal and Dynamic Execution Environ-
ment.

the ODP reference model [8]. Nevermind is based on a re-
flexive dynamic compiler [12] and an Hardware Abstraction
Level (HAL) [6] (for more details on this architecture and
the Virtual Vitrtual Machine project, see [11]). The HAL is
responsible for reifying hardware resources in a policy neu-
tral way, that is reifying access to physical resources without
adding any semantic. The compiler defines a reflexive and
open chain of dynamic compilation used to incrementally de-
fine higher-level abstractions and to execute arbitrary scripts
(i.e. applications, extensions or reconfigurations).

Nevermind follows an Exokernel-like [5] approach: it de-
fines a minimal environment that is extended or special-
ized by dynamically compiling appplication-level extensions.
Moreover, the reflexivity of the compiler allows arbitrary
adaptation of any language aspect, through the reification of
its internals, as well as any application-level code, by keeping
meta-data issued from the compilation phase. Nevermind

defines a central common language substrate (and runtime),
upon which interoperability can be achieved. In particular,
it uses an intermediate data/code representation, based on
Lisp-like syntax trees, as a front-end language.

In complement, this minimal execution environment includes
some device drivers (mainly keyboard, framebuffer and net-
work adapter) and a TFTP-like protocol used to incremen-
tally load additional modules from a remote repository. Hence,
dedicated execution environments are dynamically built and
extended on demand.

Figure 1 represents the dynamic construction of such an
environment upon Nevermind: a dynamically adaptable
Micro-ORB called FlexORB. At the lowest level the HAL
reifies physical resources through a set of components. The
memory allocator is based on the component reifying ac-
cess to physical memory. The dynamic compiler is in turn
based on this minimal memory allocator. The administra-
tor types loading commands (step 1 ), such as (tftp-get

a-repository a-package-name), in the console interface of
Nevermind. Those commands are dynamically compiled
(step 2 ) and executed: a request is sent to the specified
repository through the TFTP-like protocol and the under-
lying network driver (step 3 ). This results in the download
of the requested module using the intermediate represen-
tation (step 4 ). Once loaded, it is dynamically compiled,
hence defining new components and services (step 5 ). Mod-
ules dependencies are checked after deployment (during the
dynamic compilation), potentially resulting in additional re-
quests to the repository. This minimal execution environ-
ment runs on bare hardware (currently PowerPC proces-
sors), with a memory footprint of 120 KB.

2.2 FlexORB
FlexORB defines a basic remote invocation protocol im-
plemented directly upon the network adapter. It offers a
checksum-based integrity control and supports message frag-
mentation. As with traditional middlewares, this remote in-
vocation protocol is based on stub/skeleton pairs (or prox-
ies) for accessing statically defined services. But, as opposed
to traditional middlewares in which proxies are statically
generated, FlexORB allows dynamic generation of proxies.
Hence components can be exported on demand. Moreover,
bindings between components can be dynamically reconfig-



Min Max
FlexORB 27% 32%
RPC(UDP) 100% 100%
RPC(TCP) 111% 120%
ORBit2(IIOP) 216% 229%
Jonathan(IIOP) 535% 998%
RMI 769% 1430%
OpenORB(IIOP) 991% 1719%

Figure 2: Comparative3performance of remote invo-
cations’response times.

ured: migration of a component can be addressed by dy-
namically generating a redirection proxy and an overloaded
component can be replicated on the fly similarly. Moreover,
those dynamic adaptations are completely transparent to
the client.

Based on the intermediate code representation, we have im-
plemented a remote evaluation facility to support mobile
code. It is defined as a proxy for the readEvalPrint main
function of the compiler that receives serialized code to exe-
cute as a parameter. Code serialization is a recursive trans-
formation of the intermediate code representation into a se-
quence of bytes. For example, an expression being a list
object containing objects, its serialized representation starts
by the bytecode associated with the list type followed by
the serialized representation of each object it contains.

Whereas simple bindings reconfigurations are based on dy-
namic compilation of local proxies, mobile code allows for
more complex adaptations: both ends of a binding (server-
side as well as client-side) are dynamically re-compiled and
re-deployed.

3. PERFORMANCE MEASUREMENTS
In order to evaluate FlexORB, we developed several ser-
vices performing classical simple tasks (arithmetics, table in-
sert/lookup, string manipulations and file open/read/close)
with various size of parameters (ranging from none up to
128 bytes) and results (ranging from none up to 4 KB). We
used two 366 MHz G3 PowerPCs running Linux 2.4 and con-
nected through a 100Mbits Ethernet. We implemented our
test services with traditional SUN’s RPC, a 100% c CORBA
(ORBit 2.9.1), Java RMI (IBM 1.4 runtime, with Just-In-
Time compilation enabled), a generic middleware providing
a Java-based CORBA implementation (Jonathan 3.0) and a
reflexive CORBA implementation (OpenORB 1.2.1).

3.1 Remote invocations
As illustrated in Figure 2, our lightweight FlexORB outper-
forms traditional distributed environments: using a high-
level protocol introduces a heavier overhead, as well as us-
ing a generic approach. Based on the set of services we
used, FlexORB is nearly 3.5 times faster than traditional
RPC using UDP, 4 times faster than TCP-based RPC and
more than 7.5 times faster than a 100% c implementation
of CORBA. Although Java-based solutions (both RMI and

3RPC over UDP is used as the reference.
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Figure 3: Decomposition of a remote invocation.

CORBA) used a dynamic (Just-In-Time) compiler too, Flex-
ORB is still between 16.7 and 63.7 times faster. Hence,
performance can be significantly improved by applying an
Exokernel-like (minimalist) approach combined with a re-
flexive open environment. The overhead associated with
genericity and high-levels protocols is no longer mandatory.

In order to present an in-depth evaluation of FlexORB, Fig-
ure 3 represents a decomposition of remote invocations re-
sponse times, as experienced by the client, into four major
steps: request preparation, physical round-trip over the net-
work, reply reception and server-side processing. Figure 4
shows the detailed performance of several remote invoca-
tions. empty is a very simple method, without any parame-
ter nor return value, that increments a local counter. getMsg
has no parameter and returns a constant string (32 Bytes).
echoBytes takes 128 bytes as a parameter and returns an-
other 128 bytes array. lookup and register respectively
correspond to search and insert operations on a relatively
small table of structures (≡ 100 elements). openFile, closeFile
and readFile are just wrappers over standard open, close
and read system calls. We tested readFile without any
I/O optimization, then with an I/O cache and read ahead
enabled (to fairly compare with Linux-based solutions). The
overall performance is clearly limited by the physical trans-
port of messages over the network: even on a switched
100Mb/s Ethernet, it represents at least 91% of the response-
time experienced by the client.

3.2 On-demand bindings
As mentioned in Section 2, the dynamism of FlexORB per-
mits dynamic reconfiguration of components’ bindings through
dynamic recompilation of proxies. Such recompilations are
rather cheap operations. For example, dynamically compil-
ing a proxy-factory for an interface composed of a dozen of
methods takes 474 µs. This proxy-factory is then used to
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Figure 4: Detailed performance of remote invoca-
tions.

  (module :myRPC)

  (define echo
      (lambda(ptr) 
          (:system.printf "received::%s\n" ptr) 
          ))
   
  (module :global) 

  (:rpc-register "myRPC.echo" myRPC.echo)

Figure 5: A simple deployment script.

produce proxies on the fly for any component implementing
this interface in a couples of µs. Hence, components can
export services on demand, in a completely transparent way
for the client.

3.3 Mobile code
Nonetheless, such static RPC-like remote invocations are
not sufficient to support the construction of active spaces [7].
Using the intermediate representation defined in Never-

mind, FlexORB offers a direct support for mobile code. Ser-
vices or protocols are deployed on demand and dynamically
adapted, as and when needed. Figure 5 represents a script
deploying a simple HelloWorld-like service. It is first seri-
alized as approximately a hundred bytes long message and
sent to the server. The remote-eval handler is called with
the serialized code as parameter. It deserializes, compiles
and executes the script: a new namespace myRPC and a han-
dler function (echo) are defined, then the service is exported
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Figure 6: Detailed performance of mobile code.

through the call to rpc-register.

Figure 6 represents two detailed decompositions of the re-
sponse time experienced by the client when invoking the
remote evaluation of the previously presented deployment
script: evalExpr uses a binary representation of syntax trees
for code serialization and evalString uses a text-based rep-
resentation for code serialization. In the former case, the
code serialization and deserialization is heavier but it in-
cludes steps from the compilation phase: hence the larger
dynamic compilation time with the second method. Since
performance are quite similar, choosing between those two
methods depends essentially on the relative processing power
of both client and server as well as whether the serialized
code is to be sent or executed more than once.

4. RELATED WORK
As distributed applications composed of heterogeneous in-
teracting components became widely used, middlewares such
as SUN’s RPC, CORBA or Java RMI, have emerged as a
solution to ease their development. They were designed to
address interoperability and distribution issues by hiding
network communications in server and workstation based
environments and rely on large, static, rigid and mono-
lithic architectures. Hence, they do not match constraints
of emerging application-domains, such as multimedia [3] or
ubiquitous computing [15].

Several projects propose to introduce reflection and design
patterns at the ORB level to bring more flexibility. Zen [10]
is a real-time ORB designed to support distributed embed-
ded applications. It uses a design pattern known as Virtual
Component to factor out rarely-used functionalities, result-
ing in a smaller memory footprint (around 60 KB for the
root POA) [9]. Nevertheless, it relies on a standard mono-
lithic JVM which should be factored into the results, both
in term of memory footprint and flexibility.

DynamicTAO [13] is a CORBA ORB that uses reflection
to manage dependencies among components and thus al-
lows safe dynamic reconfigurations. It has evolved into a
reflexive infrastructure dedicated to ubiquitous computing
(UIC) [1]. It is composed of a core (a set of components
implementing various behaviours) and a dynamic configura-
tion tool used to specialize and reconfigure the generic core.



As they are not based on some kind of virtual machine with
a portable code representation, they are unlikely to handle
very heterogeneous dynamic environments requiring mobile
code.

LegORB [14] is a small CORBA compliant ORB designed
for ubiquitous computing. It has a rather small footprint,
while supporting dynamic adaptation of core mecanisms:
140 KB for the dynamically adaptable version, running on
top of an underlying OS, such as PalmOS or WindowsCE.
LegORB, as DynamicTAO, does not offer any support for
mobile code.

5. CONCLUSION AND PERSPECTIVES
This paper presents the design and implementation of Flex-
ORB, a small footprint flexible micro-ORB based on the
Nevermind dynamically adaptable minimal execution en-
vironment. It addresses heterogeneity and dynamism issues
found in ubiquitous computing environments by providing
support for mobile code and dynamic flexibility.

Preliminary results show that FlexORB significantly outper-
forms traditional middlewares on static remote invocations.
Moreover, they demonstrate that both dynamic flexibility
and mobile code are very efficient (hundreds of µs). Whereas
flexibility traditionally comes at the cost of performance, our
experience with FlexORB lead to reconsidering this belief.

However, more work needs to be done, in particular concern-
ing consistency checks in reconfigurations and deployments.
Nevermind provides support for code analysis and verifi-
cation during the dynamic compilation phase, but a dedi-
cated language for expressing consistency or security rules
is still necessary. An approach based on Domain Specific
Languages would certainly help to solve this issue. More-
over, since Nevermind can interoperate with compiled c

and c++ codes, we investigate re-use of existing ODP-based
components. We also plan to experiment further with Flex-
ORB on several devices, like iPaqs, over wireless connec-
tions.
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